US009196226B2

a2 United States Patent 10) Patent No.: US 9,196,226 B2
Georgiev (45) Date of Patent: Nov. 24, 2015
(54) COMPUTER-IMPLEMENTED METHODS (56) References Cited

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

AND SYSTEMS FOR LAYING OUT
ELECTRONIC CONTENT ELEMENTS

Inventor: Evtim Ivanov Georgiev, Mountain

View, CA (US)
Assignee: Adobe Systems Incorporated, San Jose,
CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 684 days.

Appl. No.: 13/150,618

Filed: Jun. 1, 2011

Prior Publication Data

US 2013/0321440 A1 Dec. 5, 2013

Int. CI.
G09G 5/26

GOGF 3/147

GOGF 1721

USS. CL

CPC G09G 5/26 (2013.01); GOGF 3/147 (2013.01);

GOGF 17/211 (2013.01); GOGF 17/218

(2013.01); GO9G 2340/0407 (2013.01); GOIG

2380/04 (2013.01)

(2006.01)
(2006.01)
(2006.01)

Field of Classification Search

CPC AG61L 2/26; A61L 12/086; A61L 12/128;
AG61L 2/24; GOGF 21/60; GOG6F 21/10; GOGF
21/31; GOGF 21/00; GOG6F 3/04883; GOGF
17/30017, GOGF 21/105; GOGF 3/0481;
GOGF 19/3481; GOGF 3/0484
USPC 345/660

See application file for complete search history.

U.S. PATENT DOCUMENTS

6,414,698 B1* 7/2002 Lovelletal. 715/800
7,216,294 B2 5/2007 Gibbs et al.
7,765,470 B2 7/2010 Epstein
2005/0071781 Al 3/2005 Atkins
2006/0259860 Al* 11/2006 Kobashicccocovvnnn. 715/521
2007/0136201 Al* 6/2007 Sahetal. 705/51
2011/0320938 Al* 12/2011 Schorsch ... 715/269
OTHER PUBLICATIONS

“First and Parallel Webpage Layout,” Leo A. Meyerovich et al.,
University of California, Berkeley.

* cited by examiner

Primary Examiner — Devona Faulk

Assistant Examiner — F. M. Hossain

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLLP

(57) ABSTRACT

One exemplary embodiment involves performing a function
on a container to determine a value for a container size
attribute, wherein a contained element is contained by the
container. Performing the function on the container involves
determining whether the container constrains a contained
element size attribute of the contained element. Performing
the function on the container further involves performing the
function on the contained element to determine a value for the
contained element size attribute. If the container constrains
the contained element size attribute, the function is passed
information identifying how the container constrains the con-
tained element size attribute. If the container does not con-
strain the contained element size attribute, the function is
passed information identifying that the container does not
constrain the contained element size attribute. Performing the
function on the container further involves determining the
value of the size attribute of the container.

17 Claims, 5 Drawing Sheets

10 COMPUTING DEVICE

12 MEMORY

13 ELECTRONIC CONTENT

14 ELEMENTS

15 LAYOUT FUNCTIONALITY

18 DISPLAY

19 Ul DEVICE(S)

1 PROCESSOR 17 1/0

US 9,196,226 B2

Sheet 1 of 5

Nov. 24, 2015

U.S. Patent

Il 3¥NOId

ONnzy

sSNg9r|| ¥OSS3J0Md I

(S)adIA3A IN 61

AV1dSIa gl

ALITYNOILONNS LNOAV1SL

SININIT ¥I

INILNOD JINOHLO3TI €1

AHOW3AN T1

30IA3A ONILNNOD OF

U.S. Patent Nov. 24, 2015 Sheet 2 of 5 US 9,196,226 B2

200

N

210 PERFORM A FUNCTION ON A CONTAINER TO DETERMINE A
L,_\ VALUE FOR A CONTAINER SIZE ATTRIBUTE

220 DETERMINE WHETHER THE CONTAINER CONSTRAINS A

™ CONTAINED ELEMENT SIZE ATTRIBUTE OF A
CONTAINED ELEMENT

230 l

___|_ | PERFORM THE FUNCTION ON THE CONTAINED ELEMENT
™ TO DETERMINE A VALUE FOR THE CONTAINED
ELEMENT SIZE ATTRIBUTE

240

IF CONTAINER CONSTRAINS, PASS INFORMATION
IDENTIFYING HOW THE CONTAINER CONSTRAINS

250

IF CONTAINER DOES NOT CONSTRAIN, PASS
INFORMATION IDENTIFYING THAT THE CONTAINER
DOES NOT CONSTRAIN

260 l

(DETERMINE THE VALUE OF THE CONTAINER SIZE
™ ATTRIBUTE

FIGURE 2

U.S. Patent Nov. 24, 2015 Sheet 3 of 5 US 9,196,226 B2

310

-

THIS IS
T ONE
'LABEL

FIGURE 3

410

| LABEL
. TWO

FIGURE 4

LT 430

U.S. Patent Nov. 24, 2015 Sheet 4 of 5 US 9,196,226 B2

510

LABEL ' .

52&\ BUTTON TEXT |- s40

600 FIGURE 5

610 DETERMINE THAT A CONTAINER HAS A WIDTH LIMITATION
THAT CONSTRAINS A WIDTH OF AN ELEMENT CONTAINED
L"\ WITHIN THE CONTAINER

620

PERFORM A FIRST FUNCTION TO DETERMINE A VALUE FOR
L’ﬂ THE WIDTH OF THE ELEMENT, WHEREIN A PARAMETER OF
THE FIRST FUNCTION IDENTIFIES THE WIDTH LIMITATION
THAT CONSTRAINS THE CONTAINED ELEMENT WIDTH

v

630 PERFORM A SECOND FUNCTION TO DETERMINE A VALUE FOR
k_’__\ THE HEIGHT OF THE ELEMENT, WHEREIN THE VALUE FOR
THE HEIGHT OF THE ELEMENT IS DETERMINED BASED ON
THE VALUE DETERMINED FOR THE WIDTH OF THE ELEMENT

640

K_,_\ DETERMINE A VALUE FOR THE HEIGHT OF THE CONTAINER
BASED ON THE VALUE DETERMINED FOR THE HEIGHT OF THE
ELEMENT

FIGURE 6

U.S. Patent Nov. 24, 2015 Sheet 5 of 5 US 9,196,226 B2

700

\

710

L——\ DETERMINE, VIA AN INVALIDATE FUNCTION, WHETHER TO
INVALIDATE A LAYOUT OF AN ELEMENT

720 DETERMINE WHETHER A CONTAINER CONTAINING THE
__1_| ELEMENT HAS A MEASURED SIZE THAT DEPENDS ON A
I MEASURED SIZE OF THE ELEMENT

730 IF THE CONTAINER MEASURED SIZE DEPENDS ON

THE ELEMENT MEASURED SIZE, DETERMINE, VIA
THE INVALIDATE FUNCTION, WHETHER TO
INVALIDATE A LAYOUT OF THE CONTAINER

740 l

™ DETERMINE WHETHER THE ELEMENT IS FULLY
CONSTRAINED TO THE CONTAINER

|

750 INVALIDATE THE ELEMENT IF THE CONTAINER IS
(INVALIDATED OR IF THE ELEMENT IS NOT FULLY
™~ CONSTRAINED TO THE CONTAINER

FIGURE 7

US 9,196,226 B2

1
COMPUTER-IMPLEMENTED METHODS
AND SYSTEMS FOR LAYING OUT
ELECTRONIC CONTENT ELEMENTS

FIELD

This disclosure relates generally to computer software and
more particularly relates to the creation, modification, and
use of electronic content.

BACKGROUND

Electronic content can include various types of graphical
elements and employ various techniques in positioning those
elements during execution or other use of the electronic con-
tent. Flectronic content may include attributes that define or
specify element size, position, and other constraints that pro-
vide various limitations on the positions and sizes of the
elements. An element’s position and/or size may be defined
with attributes such as left, right, top, bottom, horizontal
center, vertical center, baseline position, X/Y, width, height,
minimum and maximum width and height, gap or space
between elements, vertical alignment, horizontal alignment,
width as a percentage, height as a percentage, etc. Such
attributes may provide size and/or shape specification relative
to the entire electronic content display area or to a container
representing that entire area, or may be defined with respect to
some other reference. For example, elements may be orga-
nized in a hierarchy such that one element, i.e., a parent or
container element, can contain one or more other elements,
i.e., its child elements. The positions and sizes of child ele-
ments can be defined relative to the container that contains
them. Changes to the position and/or size of the parent can
change the positions and/or size of the child elements and
vise-versa. Thus, forexample, when a container is resized, the
child elements may change accordingly.

Constraints are thus used to constrain an element’s position
or size, for example, relative to other elements or to a con-
tainer that contains the element. For example, one or more
constraints may define the distance between a child element
and the edges of the container that contains it. As another
example, one or more constraints may define specified
numerical values for the width and height of the element. As
another example, one or more constraints may define mini-
mums and maximums for width and height. As another
example, one or more constraints may specify an amount of
padding required on an element’s left, right, top, and/or bot-
tom relative to the content sides or sides of an element con-
taining the element. As another example, one or more con-
straints may require input to define the text of an element.

Some types of constraints are explicitly specified by a
developer during development of the electronic content. For
example, a developer may specify size constraints requiring
an element to be 100 pixels wide and 10 pixels tall. Other
constraints depend on runtime data and thus may be consid-
ered implicitly defined. For example, a box element’s size
attributes may be constrained such that the box will be sized
(and possibly resized during runtime) to be just big enough to
fit runtime-determined text that is displayed within it.

Conventional layout features have various disadvantages
in particular with respect laying out elements that have inter-
dependent dimensions. For example, it may be desirable to
have layout functionality within a piece of electronic content
control the resizing of a box element that has within it a long
string of text such that if the box is made shorter its height
increases to accommodate the text reflowing. To handle such
reflow situations developers have written specific code to

10

40

45

50

2

calculate and set positions and sizes. Even when addressed by
custom developer code, the handling of reflow situations and
other layout functionality has been hindered by inefficiencies.
Conventional layout techniques have further been inefficient
in performing layout functions on elements the layout of
which is considered “invalid,” i.e., an element’s layout is
considered invalid initially and after a change that requires
checking whether the element needs to be laid out again. For
example, multiple layout passes have been required to vali-
date such invalidated elements because of, among other
things, elements having dimensionally interdependent con-
straints. In addition, conventional layout techniques have
included layout functionality that has involved performing
unnecessary measurement calculations and/or hinders mea-
surement optimizations by performing measurement and lay-
out functions in separate phases.

SUMMARY

One exemplary embodiment involves performing a func-
tion on a container to determine a value for a container size
attribute, wherein the container is used in electronic content
and a contained element is contained by the container. Per-
forming the function on the container involves determining
whether the container constrains a contained element size
attribute of the contained element. Performing the function on
the container further involves performing the function on the
contained element to determine a value for the contained
element size attribute. If the container constrains the con-
tained element size attribute, the function is passed informa-
tion identifying how the container constrains the contained
element size attribute. If the container does not constrain the
contained element size attribute, the function is passed infor-
mation identifying that the container does not constrain the
contained element size attribute. Performing the function on
the container further involves determining the value of the
size attribute of the container.

Another exemplary embodiment involves determining that
a container has a width limitation that constrains a width of an
element contained within the container, wherein the container
is used in electronic content. The exemplary embodiment
further involves performing a first function to determine a
value for the width of the element, wherein a parameter of the
first function identifies the width limitation that constrains the
contained element width. The exemplary embodiment further
involves performing a second function to determine a value
for the height of the element, wherein the value for the height
of the element is determined based on the value determined
for the width of the element. And, the exemplary embodiment
further involves determining a value for the height of the
container based on the value determined for the height of the
element.

Another exemplary embodiment involves determining, via
an invalidate function, whether to invalidate a layout of an
element, wherein invalidation of the layout indicates a
requirement to lay out the element. Determining whether to
invalidate the layout of the element involves determining
whether a container containing the element has a measured
size that depends on a measured size of the element. If the
container measured size depends on the element measured
size, the embodiment involves determining, via the invalidate
function, whether to invalidate a layout of the container.
Determining whether to invalidate the layout of the element
also involves determining whether the element is fully con-
strained to the container. And, determining whether to invali-
date the layout of the element also involves invalidating the

US 9,196,226 B2

3

element if the container is invalidated or if the element is not
fully constrained to the container.

These illustrative features are mentioned not to limit or
define the disclosure, but to provide examples to aid under-
standing thereof. Additional embodiments are discussed in
the Detailed Description, and further description is provided
there. Advantages offered by one or more of the various
embodiments may be further understood by examining this
specification or by practicing one or more embodiments pre-
sented.

BRIEF DESCRIPTION OF THE FIGURES

These and other features, aspects, and advantages of the
present disclosure are better understood when the following
Detailed Description is read with reference to the accompa-
nying drawings, where:

FIG. 1 is a block diagram depicting exemplary computing
devices in an exemplary computing environment for imple-
menting certain embodiments;

FIG. 2 is a flow chart illustrating an exemplary method of
laying out elements of electronic content;

FIG. 3 illustrates elements displayed using an exemplary
layout method;

FIG. 4 illustrates another example of elements displayed
using an exemplary layout method;

FIG. 5 illustrates another example of elements displayed
using an exemplary layout method involving measurement;

FIG. 6 is a flow chart illustrating an exemplary method of
determining values for the width and height of a container and
its contained elements; and

FIG. 7 is a flow chart illustrating an exemplary method of
invalidating element layout.

DETAILED DESCRIPTION

Computer-implemented systems and methods for laying
out electronic content elements are disclosed. Layout func-
tionality used as part of or otherwise used in the use of a piece
of electronic content is provided to control the resizing/repo-
sitioning, i.e., the layout, of the electronic content’s elements.
Such layout functionality may use functions with parameters
that provide more information than those used by conven-
tional layout techniques. For example, upon a change during
use of electronic content possibly requiring re-laying out one
or more elements, one or more functions can be called to
determine whether any elements need to be resized/reposi-
tioned and to cause any necessary re-laying out of elements to
occur. Such functions may address the circumstances in
which elements are constrained to one another.

Various improved features are further provided for laying
out elements of a piece of electronic content that comprises
one or more outer containers that comprises one or more
elements and/or inner containers. The inner containers may
each themselves contain one or more other elements and/or
inner containers and so on, such that the containers and ele-
ments can be stored in a data structure that corresponds to a
hierarchy or tree structure in which each lower layer within
the tree comprising elements or containers that are contained
within a container of a higher layer of the tree. To layout
elements of a piece of electronic content comprising such a
tree or hierarchy of containers and elements, a function may
be called for a first element that may itself include function
calls (possibly recursive function calls) to determine con-
straints imposed by and on other elements. Such functions
may use parameters that provide more information than those
used by conventional layout techniques.

10

15

20

25

30

35

40

45

50

55

60

65

4

The following example is provided as an illustration of
providing more information to a layout function. In the
example, a piece of electronic content comprises a label L.
inside acontainer C. The label L is constrained to have a width
that is 100% of the width of container C, but does not have any
constraints on its height such that it can take as much space as
itneeds. In this example, the container is 100 pixels wide. One
or more functions can be called to determine the width and
height of the label. For example, in a top-down layout pass, a
function can be called to determine the layout of the container
by using a measure height function and a measure width
function. The measure width function may identify that the
width is fixed at 100 pixels. The measure height function,
however, may determined that the height of the label is depen-
dent upon its children and recursively calls the measure
height function on the child, which in this example, is the
label. In using such a function to measure the height of the
child, unlike in the contemporary systems, non-numerical
information can be passed as one or more parameters. The
parameters may identify a fixed width constraint of 100 based
on the container’s fixed width and for height provide a param-
eter that indicates that height information is not available, i.e.,
that there is no constraint coming from the container for the
height. The function can then determine how tall the label
needs to be based on the information that width is 100 pixels
and height is not constrained. The function can determine that
awidth of 100 pixels will require the text of the label to reflow
onto 3 lines and return a height of 36 pixels, i.e., 12 pixels for
each line in this example. This example illustrates how pro-
viding certain types of additional information, in this example
the information that the parent does not constrain height,
allows the layout to be determined more effectively and effi-
ciently.

In one embodiment layout functionality is used to layout or
adjust the layout of a tree of elements by computing element
size and/or position, for example, by computing simple rect-
angular layout bounds for each element. Containers with
child elements, i.e., non-terminal layout elements may have a
layout object that defines how their children’s layout bounds
are to be computed. Pre-defined layout objects for common
arrangements of layout element children and custom layout
objects can be defined. Some layout objects are constrained
by, i.e., depend on, properties of their children.

When any aspect of an element changes that might require
re-calculation of its layout, an “invalidate” function may be
called so that the layout functionality knows that the element
is currently invalid. The layout functionally may track invalid
elements in a data structure. In a layout pass, the layout
functionality may iterate through the data structure, remove
elements from the structure as the elements are validated, and
update the layout as is appropriate. During an initial layout,
all elements are considered to be invalid and a layout pass
may iterate through every element of the electronic content.

In one embodiment, layout functionality validates ele-
ments in a single layout pass. Using non-numerical and other
types of information in layout function parameters can allow
validation of layout elements in a single pass. In addition, the
laying out of elements can be made more efficient by passing
more information top down during a layout pass. Using such
techniques may be particularly beneficial with respect to pro-
viding for the layout of elements with interdependent dimen-
sions, e.g., in which element height depends on width or vice
versa, such as may exist in the case of reflowing text within a
box element the size of which depends upon the text.

Additional efficiencies can be achieved by making mea-
surements only when necessary, for example, a part of the
data structure, and by providing one or more facilities to lay

US 9,196,226 B2

5

out a sub-tree of the data structure given only partial infor-
mation. One embodiment reduces or minimizes unnecessary
measurement calculations by determining whether or not re-
measurement is required by checking whether the child node
is going to be changeable without affecting the parent and
whether the parent node is such that it does not need to be
re-measured even if the child has changed. If a child’s mea-
sured size does not affect its parent’s measured size, then
whenever the child size is invalidated the parent size does not
need to be invalidated. Similarly, where the layout function-
ality can identify exactly what the parent size is, measurement
of children may be unnecessary.

These illustrative examples are given to introduce the
reader to the general subject matter discussed here and are not
intended to limit the scope of the disclosed concepts. The
following sections describe various additional embodiments
and examples with reference to the drawings in which like
numerals indicate like elements.

Referring now to the drawings, FIG. 1 is a block diagram
depicting exemplary computing device in an exemplary com-
puting environment for implementing certain embodiments.
Applications and other electronic content execute or are oth-
erwise used on the exemplary computing device 10 and are
shown as functional components or modules. As is known to
one of skill in the art, such applications and content may be
resident in any suitable computer-readable medium and
execute on any suitable processor. For example, as shown the
device 10 comprises a computer-readable medium such as a
random access memory (RAM) 12 coupled to a processor 11
that executes computer-executable program instructions and/
or accesses information stored in memory 12. Such a proces-
sor 11 may comprise a microprocessor, an ASIC, a state
machine, or other processor, and can be any of a number of
computer processors. Such a processor can comprise, or may
be in communication with a computer-readable medium
which stores instructions that, when executed by the proces-
sor, cause the processor to perform the steps described herein.

A computer-readable medium may comprise, but is not
limited to, an electronic, optical, magnetic, or other storage
device capable of providing a processor with computer-read-
able instructions. Other examples comprise, but are not lim-
ited to, a floppy disk, CD-ROM, DVD, magnetic disk,
memory chip, ROM, RAM, an ASIC, a configured processor,
optical storage, magnetic tape or other magnetic storage, or
any other medium from which a computer processor can read
instructions. The instructions may comprise processor-spe-
cific instructions generated by a compiler and/or an inter-
preter from code written in any suitable computer-program-
ming language, including, for example, C, C++, C#, Visual
Basic, Java, Python, Perl, JavaScript, and ActionScript.

The client device 10 may also comprise a number of exter-
nal or internal devices such as a mouse, a CD-ROM, DVD, a
keyboard, a display, audio speakers, one or more micro-
phones, or any other input or output devices. For example,
device 10 is shown with a display 18 and various user inter-
face devices 19. A bus, such as bus 16, is included in the
device 10. Device 10 could be a personal computing device, a
mobile device, or any other type of electronic devices appro-
priate for providing one or more of the features described
herein.

FIG. 1 illustrates an exemplary device 10 that comprises, in
memory 12, electronic content that comprises elements 14
and layout functionality 15.

As used herein, the terms “element” and “layout element™
refer to any part of an application or other electronic content’s
graphical user interface (GUI) or other graphical display that
has size and position on screen. Elements can have other child

20

25

30

40

45

60

6

elements. A tree of layout elements may be used to represent
the GUI or graphics of electronic content. Exemplary ele-
ments include, but are not limited to, images, text, buttons,
controls, graphic primitives, and containers. Developer speci-
fied constraints are referred to as “explicit.”

As used herein, the terms “container,” “layout container,”
“parent,” and “parent element” refer to any element that has
one or more child elements (i.e., contained elements) the
position of which is constrained or otherwise linked to the
container. In a tree of elements used to represent the GUI or
graphics of electronic content, non-terminal elements are
containers. In one embodiment, each container has a layout
object.

As used herein, the term “layout object” refers to pre-
defined logic for the arrangement of the child layout elements
of'alayout container. There may be pre-defined layout objects
for common arrangements of layout elements, e.g., Horizon-
talLayout, VerticalLayout, BasicLayout, etc. Developers may
define custom layout objects.

As used herein, the terms “constraint” and “layout con-
straint” refer to specified settings for a particular layout ele-
ment. Exemplary constraints include, but are not limited to,
values specified for width, height, left, right, top, bottom,
baseline, % width, % height, etc. operations performed by or
on layout objects may take constraints into account in deter-
mining layout and may, if necessary, relax constraints in
pre-defined order.

As used herein, the term “measurement” refers to a deter-
mining of an attribute of an element using the element’s
constraints and/or contents. For example, measuring the
width and height may be determined by looking at the con-
tents of the element during a measurement pass.

As used herein, the term “layout pass” refers to a process
used to lay out elements of electronic content at the time the
content is being run or otherwise used. A layout pass gener-
ally involves assigning a width, height, and/or position for
each element of the electronic content. A layout pass may
involve iterating through a structure of elements and adjust-
ing sizes and/or positions of interrelated elements. A layout
pass may involve performing measurements to determine size
and/or positions of elements. For example, in the case of a text
label element used within a parent element, a layout pass may
involve determining the parent size and the child size in a
series of operations that account for the relationship between
the label and the parent element. A layout pass in this example
may measure how much space is needed for the text and then
determine a size (e.g., width and height) of the parent element
based on this information. During runtime of electronic con-
tent, a layout pass may occur initially and then again when a
change or some other event occurs within the content that
requires determining whether layout changes are required or
not.

FIG. 2 is a flow chart illustrating an exemplary method 200
of laying out elements of electronic content. Such an exem-
plary method 200 may be performed on a variety of computer
devices including, but not limited to device 10 of FIG. 1. For
purposes of illustration not limitation, the features of exem-
plary method 200 are described with reference to elements of
FIG. 1.

The exemplary method 200 involves performing a function
on a container to determine a value for a container size
attribute (e.g., for a height or a width of the container), as
shown in block 210. Performing such a function may be
performed by a processor such as processor 11 of a device 10
of FIG. 1. Performing the function on a container may be
performed as part of a single pass through a data structure to
lay out each element of the electronic content. Performing the

US 9,196,226 B2

7

function on a container may be performed to validate the
layout of one or more elements of the electronic content, for
example, in response to one or more elements being invali-
dated during use of the electronic content.

Performing the function on the container involves deter-
mining whether the container constrains a contained element
size attribute (e.g., for a height or a width) of the contained
element, as shown in block 220. Determining whether the
container constrains the contained element size attribute may
involve, as examples, determining if a fixed, minimum, or
maximum value is specified for the container size attribute.

Performing the function on the container further involves
performing the function on the contained element to deter-
mine a value for the contained element size attribute, as
shown in block 230. As shown in block 240, if the container
constrains the contained element size attribute, the function is
passed information identifying how the container constrains
the contained element size attribute. For example, informa-
tion identifying how the container constrains the contained
element size attribute may identify a specified value as a
fixed, minimum, or maximum value constraint. The informa-
tion identifying that the container constrains the contained
element size attribute may comprise non-numerical informa-
tion, for example, identifying a constraint type as being a
fixed value, maximum value, minimum value, and the like.

However, as shown in block 250, if the container does not
constrain the contained element size attribute, the function is
passed information identifying that the container does not
constrain the contained element size attribute. The informa-
tion identitying that the container does not constrain the con-
tained element size attribute may comprise non-numerical
information.

Performing the function on the container further involves
determining the value of the container size attribute, as shown
in block 260. In one embodiment, a result of the function
performed on the contained element is used in determining
the value of the size attribute of the container. Such a result
may, for example, comprise the value determined for the
contained element size attribute and the value determined for
the container size attribute may depend upon and thus be
determined using the value determined for the contained ele-
ment size attribute.

Methods such as method 200 of FIG. 2 can be used to
address reflow issues and to provide robust and efficient lay-
out functionality in electronic content. In one embodiment,
layout functions conventionally separated into a measure
phase and an update phase are combined into a single layout
pass. A single layout pass can traverse a tree of elements from
the top down passing information from a layout determina-
tion made for one element for use in a layout determination
made for another element.

FIG. 3 illustrates elements displayed using an exemplary
layout method. Label 320 is contained within container 310.
The label 320 is constrained to have a width that is 100% of
the width of its container 310, but does not have any con-
straints for its height. The container 310 has a maximum
width of 200 pixels and does not have a specified height
constraint. A layout pass may involve determining a width
and height for the container 310. A function may be called to
determine the container’s width and may identify that the
container’s width is constrained to a maximum value of 200
pixels. The function may be recursively called to determine
any child element widths, in this example, determining that
the width of the label 320 is 200 pixels based on the informa-
tion that 200 pixels are available and a determination that the
text of the label 320 will fill at least 200 pixels. A function
called to determine a width of the label 320 may return a value

20

30

40

45

55

8

to the calling function so that the container 310 can set its
width accordingly. In this example, the width of the container
310 is determined to be 200 pixels based on a retuned value
identifying that the width of the label 320 contained within is
200 pixels.

The same or another function may be called to determine
the height of the container 310 and may identify that the
height of the container 310 is not explicitly specified. The
function may be recursively called to determine child element
heights and may be passed information identifying that the
container height does not constrain the label height and/or
information providing information from prior determinations
such as the determined label width. Based on the determined
label width of 200 pixels and the information that the label’s
height is unconstrained by the container 310, the label’s
height can be determined. In this example, the label’s height
is determined to be 300 pixels based on a determination that,
at 200 pixel width, the text of the label 320 will reflow onto
three lines of 100 pixel height each for a total label height of
300. The label height determination can return a value that is
used to determine the height of the container 310. In this
example, the function called to determine the height of the
label is called within and returns information to the function
called to determine the height of the container. The returned
information identifies in this example that the height of the
label is 300 pixels. Since the height of the container 310 is
unconstrained, it is determined based on its children, in this
example, resulting in a container height of 300 pixels.

Embodiments disclosed herein provide layout functions
that use both fixed values and information elements as param-
eters. By passing fixed values where there are fixed values
available, passing constraints or other information where
there are constraints or other layout information, and passing
information identifying that there are no constraints when
there are no constraints, the functions are able to accomplish
layout functions more efficiently, while addressing potential
interdependencies between elements.

FIG. 4 illustrates another example of elements displayed
using an exemplary layout method. Outer container 410 con-
tains an inner container 420, which itself contains a label 430.
Container 410 has a fixed width of 200 pixels. Container 420
has a 10 pixels offset. The label 430 has a width that is 100%
of the width of container 420 and has text such that, if laid out
at a 180 pixel width, then the label height is going to be 80
pixels. A layout pass calls a function on container 410 which
determines that it is the top container of the layout and is 200
pixels in width. The function called on container 410 then
calls a function (perhaps the same function called recursively)
to lay out container 420 using the information that container
420 is constrained by a 10 pixel offset. This determines that
container 420 has a 180 pixel width. The function called on
container 420 then calls a function (again perhaps the same
function called recursively) to lay out its only child—Ilabel
430. This determines that label 430 also has a width of 180
pixels. The function determines that the label must reflow the
text at 180 pixels wide and determines that a height of 80
pixels is required for the label. When the function called on
the label returns to container 420, it provides information that
the label will have a 80 pixel height. The function called on
container 420 determines that its only child, label 430, has
been laid out at a height of 80 pixels and since container 420
does not have a constraint for its own height, the function
causes container 420 to assume the height of the child label
430. Similarly, when the function called on the container 420
returns to container 410, it provides information that con-
tainer 420 will have a 80 pixel height. The function called on

US 9,196,226 B2

9

container 410 uses this returned information and the 10 pixel
offset required for container 420 to determine its own height
at 100 pixels.

FIG. 5 illustrates an example of elements displayed using
an exemplary layout method involving measurement. In FIG.
5, container 510 contains two child elements: button 520 and
label 530. The layout of container 510 is specified as a content
justified vertical layout meaning that the maximum width of
all the elements in the layout is determined and the individual
width of each element is constrained to that maximum width
value, i.e., the layout stretches all the elements to the equal the
widest one. In this example, there are no other constrains on
the button 520 and label 530. Layout functionality may
involve calling one or more functions to layout container 510
which recursively calls the layout function(s) to layout child
elements, i.e., button 520 and label 530. The function called
on container 510 may identify that container 510 has a content
justified vertical layout perform one or more measurement
functions to measure the widths of the button 520 and label
530. A measure width function on the button 520 returns a
value that is determined based on the width of the text within
the button 520 and a measure width function on the label 530
returns a value that is determined based on the width of the
label 530. In this case the button width is measured at 180
pixels and the label width is measured at 200 pixels. The
function(s) used to layout container 520 select the maximum
of'the two, 200 pixels, and that maximum value is used as the
width of each child, i.e., for button 520 and label 530. In some
circumstances it may be determined necessary to also mea-
sure child element heights. In those circumstances, the func-
tion(s) used to layout container 520 next measure the height
of the button 520 using a measure height function that is
passed the determined “max child element width,” which in
this specific example is 200—the label’s width, as a param-
eter and measures the height of the label also using a measure
height function that is passed the determined width as a
parameter. The widths and heights determined for the child
elements can be used to determine width and height of con-
tainer 510 and to position the button 520 and the label 530
within it.

Reflow of text within an element is addressed by layout
functionality that provides a facility to immediately lay out a
sub-tree given partial information, i.e., based on information
identifying a fixed value if one exists, identifying a constraint
if one exists, or identitying that no fixed value or other con-
straint exists. A layout pass can be conducted from the top
down in which a container’s layout is determined by a func-
tion that, if necessary, calls functions parameterized with
information useable to determine child element layouts and
that return information such that after a container’s children
have been laid out, the layout of the container can be finally
determined. Fixed values and information about constraints
are passed as parameters in such functions such that the layout
of all elements of a piece of electronic content can be deter-
mined in a single pass and without requiring that any elements
be measured prior to the layout pass.

The above examples illustrate functions that layout a con-
tainer by laying out the container’s child elements. Another
example involves a container A that has some contents C and
is defined as a scrolling container. The scroll bars are only
displayed when needed because the content extends beyond
the width or height of the container. When a scroll bar is not
displayed, there is more room to display the contents. This
scenario creates a relatively complicated interrelationship
between width and height that can be addressed using the
techniques presented herein. Assume that the value of the
width of the container is specified to be 100 pixels and the

20

25

40

45

10

value of the height of the container is specified to be 100
pixels. An exemplary method of determining the layout of the
container may involve determining those fixed values and
examining the contents to determine the content width and
content height. Content width/content height is the size of the
entire content but the layout size of the contents may be
smaller. The actual content size is 200 pixels in width by 90
pixels in height. Container A determines that a horizontal
scroll bar is necessary since the content is more than 100
pixels in width. The horizontal scroll bar may be, for example,
15 pixels tall. Placing the horizontal scroll bar at the bottom of
container A thus reduces the height available for content
within container A to 85 pixels. Container A next determines
whether the vertical scroll bar is necessary since the contents
90 pixel height is greater than the available 85 pixels.

To facilitate width and height determinations with respect
to elements having potentially complicated width and height
interdependencies, functions may be employed recursively
and such that sub-tree determinations can be made and
remade upon changes to the parameters that are used in those
functions.

Measurements may be performed only when necessary
because insufficient information requires the measurements.
For example, in the above example of FIG. 5, if the vertical
layout of container 510 has a fixed width and is equal justified,
meaning that all elements are made as wide as the container
510 itself, measurement of the child elements is not neces-
sary. To avoid unnecessary measurements, layout functional-
ity may determine whether the constraints in place are suffi-
cient to determine the size of the children and/or container.

One embodiment provides measurement of electronic con-
tent elements that involves splitting the measurements to
separately measure width and height. Separate functions can
be used to measure width and height. Such functions can be
passed information as parameters so that the measurements
can be performed as part of a single layout pass rather than as
a separate measurement phase. Examples of information
passed as parameters to such functions include, but are not
limited to, minimums for the width/height, maximums for the
width/height, explicit width/height, predetermined layout
width/height, etc. Passing this information as parameters
allows the layout functionality to efficiently measure ele-
ments. As a specific example, if a container has many child
elements and needs to find a maximum width, the layout
functionality can measure all the widths, determine the maxi-
mum, and use that maximum as a parameter in functions used
to determine the heights of those elements.

FIG. 6 is a flow chart illustrating an exemplary method of
determining values for the width and height of a container and
its contained elements. Such an exemplary method 600 may
be performed on a variety of computer devices including, but
not limited to device 10 of FIG. 1. For purposes of illustration
not limitation, the features of exemplary method 600 are
described with reference to elements of FIG. 1.

The exemplary method 600 involves determining that a
container has a width limitation that constrains a width of an
element contained within the container, wherein the container
is used in electronic content, as shown in block 610. Such
determining may be performed by a processor such as pro-
cessor 11 of a device 10 of FIG. 1. An exemplary width
limitation specifies a fixed value, maximum value, or a fixed
value for the width of the container.

The exemplary method 600 further involves performing a
first function to determine a value for the width of the ele-
ment, wherein a parameter of the first function identifies the
width limitation that constrains the contained element width,
as shown in block 620. Such performing may be performed by

US 9,196,226 B2

11

aprocessor such as processor 11 ofa device 10 of FIG. 1. The
exemplary method 600 further involves performing a second
function to determine a value for the height of the element,
wherein the value for the height of the element is determined
based on the value determined for the width of the element, as
shown in block 630. Such performing may be performed by a
processor such as processor 11 of a device 10 of FIG. 1. The
exemplary method 600 further involves determining, via the
processor of the computer device, a value for the height of the
container based on the value determined for the height of the
element, as shown in block 640. Such performing may be
performed by a processor such as processor 11 of a device 10
of FIG. 1.

Improved layout functionality is further provided by re-
measuring only when required. Whether re-measurement is
required can be determined by checking parent constraints
and by applying various checks. Accordingly, certain
embodiments provide improved techniques for invalidating
elements used in electronic content, where invalidating an
element provides an indication that re-measurement of the
element may be required. These determinations may involve
examining an element for potential invalidation by determin-
ing whether the parent’s measured size depends on the child’s
measured size and/or whether the parent determines the size
of'the child so that the child is fully constrained in some way
to the parent.

In one example, a container A contains a container B which
contains a label. Container A has a fixed-sized, e.g., 100
pixels by 100 pixels. Container B is constrained to container
A to have a 5 pixel left/right/top/bottom offset from the con-
tainer A. The label contained within container B has a width
that is 100% of container B and a height that is 100% of
container B. If, during use of the electronic content, the text of
the label changes, layout functionality determines whether to
invalidate the label, container B, and/or container A. In the
present example, when the text changes in the label, an invali-
date function is called on the label to determine whether to
invalidate the label. The layout functionality determines
whether container B’s measured size depends on the label’s
measured size. In this example, container B’s measured size
depends on the label’s measured size and the invalidate func-
tion s called on container B. The invalidate function called on
container B determines whether container A’s measured size
depends on the label’s measured size. Here it does not
because there is a fixed size for container A and the function
goes on to determine whether container B is fully constrained
by container A. Here container B is fully constrained by
container A. Accordingly, the invalidate function called on
container B ends and processing returns to the invalidate
function called on the label to check if the label is fully
constrained by container B. The label is fully constrained by
container B since it is defined as having a height and width
that are 100% of container B’s height and width respectively.
The invalidate size operation results in clearing any cached
measured size for container B and the label, without re-laying
out the container B. The label itself recomposes the text, but
remains the same size. The re-measurement of container B
and A is avoided.

FIG. 7 is a flow chart illustrating an exemplary method of
invalidating element layout. Such an exemplary method 700
may be performed on a variety of computer devices including,
but not limited to device 10 of FIG. 1. For purposes of illus-
tration not limitation, the features of exemplary method 200
are described with reference to elements of FIG. 1.

The exemplary method 700 involves determining, via an
invalidate function executed by a processor of a computer
device, whether to invalidate a layout of an element, as shown

20

25

35

40

45

12

in block 710. Invalidation of the layout indicates a require-
ment to lay out the element. Such determining may be per-
formed by a processor such as processor 11 of a device 10 of
FIG. 1.

Determining whether to invalidate the layout of the ele-
ment involves determining whether a container containing
the element has a measured size that depends on a measured
size of the element, as shown in block 720. If the container
measured size depends on the element measured size, the
method determines, via the invalidate function, whether to
invalidate a layout of the container, as shown in block 730.

Determining whether to invalidate the layout of the ele-
ment further involves determining whether the element is
fully constrained to the container, as shown in block 740.

Determining whether to invalidate the layout of the ele-
ment further involves invalidating the element if the container
is invalidated or if the element is not fully constrained to the
container, as shown in block 750.

An exemplary single-pass reflow system may include one
or more of a data structure to keep track of the invalid ele-
ments, a boolean flag associated with each layout element that
designates whether it is currently valid or not, layout con-
straints associated with each layout element, the layout ele-
ment tree structure, layout objects, layout object implement
in a specific set of APIs, and/or a ConstrainedSize structure.
ConstrainedSize is a data structure that represents con-
straints. For example it may have minWidth, maxWidth,
width, minHeight, maxHeight, height, preserve AspectRatio,
etc. constraints, each of which can be left unspecified. The
structure is dynamically created by the layout object or layout
elements when resizing or measuring child layout elements.
The structure is initialized based on both the pre-defined
layout logic of the current layout element or layout object
and/or a combination of the layout constraints for that ele-
ment and/or the child elements.

Exemplary measurement APIs and associated exemplary
parameters used to implement layout elements include, but
are not limited to, measureWidth(ConstrainedSize) and mea-
sureHeight(ConstrainedSize). Exemplary resize APIs and
associated exemplary parameters used to implement layout
elements include, but are not limited to, resize(Constrained-
Size):void, getLayoutWidth():Number, getlLayoutHeight():
Number, and getContentSize():Point. Exemplary positioning
APIs and associated exemplary parameters used to imple-
ment layout elements include, but are not limited to, setLay-
outPosition(x, y):void, and getLayoutPosition():Point.
Exemplary validation APIs and associated exemplary param-
eters used to implement layout elements include, but are not
limited to, validateLayout():void, invalidateLayout():void,
measureDependsOnChildSize(element):Boolean, fullyCon-
straintsChild(element):Boolean, and invalidateSize():void.

When a layout object is associated with a layout element,
the layout element may implement its APIs by delegation to
the layout object for matching APIs, e.g., measureWidth,
measureHeight, resize(), measureDependsOnChildSize(),
and fullyConstraintsChild(). This allows developers to extend
the layout system by either creating a custom layout object
and associating it with the layout element or by creating a
custom layout element.

One exemplary layout operation comprises the following
operations. Initially, only the root of a layout element’s tree is
in an invalid queue and all of the layout elements are marked
as “invalid.” When the layout bounds need to be validated,
usually before rendering, the layout system iterates the data
structure that keeps track of the invalid elements. Each ele-
ment is removed from the data structure. The element’s vali-
dateLayout() method is called. The element’s layout invalid

US 9,196,226 B2

13

flag is cleared to indicate that the elements is validated. When
something in the electronic content changes that may require
recalculation of the bounds, invalidation methods on the
related layout elements are called. If the layout computations
for the element need to be redone, then invalidateLayout() is
called. This optimization details when no tracking in the data
structure is required. Ifthe change may affect the “measured”
size of the element, then invalidateSize() is called. This
method determines whether the measured size may affect the
final computations and if so, calls invalidateLayout().

The exemplary API of measureWidth(ConstrainedSize):
Number is an exemplary function used to calculate what the
width of the element would be when taking into account the
ConstrainedSize. For example, a label will be as wide as its
text fits. If, however, the label exceeds the maxWidth (if
specified) form ConstrainedSize, max Width will be returned.

The exemplary API of measureHeight(ConstrainedSize):
Number is an exemplary function used to calculate what the
height of the element would be when taking into account the
ConstrainedSize. For example, a label will be as tall as its text
fits. If, however, the ConstrainedSize has specified “width”,
then that “width” will be used to recompose the text and figure
out the height of the text at the specified width.

The measureWidth() & measureHeight() can be imple-
mented for layout containers and layout objects in terms of
calling measureWidth()/measureHeight() on their child lay-
out elements and combining the measurements according to
the pre-defined layout logic. For example a Verticall.ayout
may sum all of the measured heights of the children in order
to implement measureHeight(), while calculating maximums
of the measured widths to implement measureWidth().

Measurements may pass constraint data top to bottom
along a DOM tree or other data structure and returns mea-
surement information bottom-top along the DOM tree or
other data structure. Additionally, having the measurement
split by width/height dimension may allow results from mea-
suring one dimension to be included in the ConstrainedSize,
perhaps undergoing a pre-defined calculation, and used as
input while measuring the other dimension. This allows
implicit sibling/layout constraints to be taken into account
when measuring.

GENERAL

Numerous specific details are set forth herein to provide a
thorough understanding of the claimed subject matter. How-
ever, those skilled in the art will understand that the claimed
subject matter may be practiced without these specific details.
In other instances, methods, apparatuses or systems that
would be known by one of ordinary skill have not been
described in detail so as not to obscure claimed subject matter.

Some portions are presented in terms of algorithms or
symbolic representations of operations on data bits or binary
digital signals stored within a computing system memory,
such as a computer memory. These algorithmic descriptions
or representations are examples of techniques used by those
of ordinary skill in the data processing arts to convey the
substance of their work to others skilled in the art. An algo-
rithm is a self-consistent sequence of operations or similar
processing leading to a desired result. In this context, opera-
tions or processing involves physical manipulation of physi-
cal quantities. Typically, although not necessarily, such quan-
tities may take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared or
otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to such
signals as bits, data, values, elements, symbols, characters,

10

20

25

30

35

40

45

50

55

60

65

14

terms, numbers, numerals or the like. It should be understood,
however, that all of these and similar terms are to be associ-
ated with appropriate physical quantities and are merely con-
venient labels. Unless specifically stated otherwise, it is
appreciated that throughout this specification discussions uti-
lizing terms such as “processing,” “computing,” “calculat-
ing,” “determining,” and “identifying” or the like refer to
actions or processes of a computing device, such as one or
more computers or a similar electronic computing device or
devices, that manipulate or transform data represented as
physical electronic or magnetic quantities within memories,
registers, or other information storage devices, transmission
devices, or display devices of the computing platform.

The system or systems discussed herein are not limited to
any particular hardware architecture or configuration. A com-
puting device can include any suitable arrangement of com-
ponents that provide a result conditioned on one or more
inputs. Suitable computing devices include multipurpose
microprocessor-based computer systems accessing stored
software that programs or configures the computing system
from a general purpose computing apparatus to a specialized
computing apparatus implementing one or more embodi-
ments of the present subject matter. Any suitable program-
ming, scripting, or other type of language or combinations of
languages may be used to implement the teachings contained
herein in software to be used in programming or configuring
a computing device.

Embodiments of the methods disclosed herein may be
performed in the operation of such computing devices. The
order of the blocks presented in the examples above can be
varied—for example, blocks can be re-ordered, combined,
and/or broken into sub-blocks. Certain blocks or processes
can be performed in parallel.

The use of “adapted to” or “configured to” herein is meant
as open and inclusive language that does not foreclose devices
adapted to or configured to perform additional tasks or steps.
Additionally, the use of “based on” is meant to be open and
inclusive, in that a process, step, calculation, or other action
“based on” one or more recited conditions or values may, in
practice, be based on additional conditions or values beyond
those recited. Headings, lists, and numbering included herein
are for ease of explanation only and are not meant to be
limiting.

While the present subject matter has been described in
detail with respect to specific embodiments thereof, it will be
appreciated that those skilled in the art, upon attaining an
understanding of the foregoing may readily produce alter-
ations to, variations of, and equivalents to such embodiments.
Accordingly, it should be understood that the present disclo-
sure has been presented for purposes of example rather than
limitation, and does not preclude inclusion of such modifica-
tions, variations and/or additions to the present subject matter
as would be readily apparent to one of ordinary skill in the art.

That which is claimed:

1. A computer-implemented method comprising:

performing, via a processor of a computer device, a func-

tion on a container to determine a value for a container

size attribute, wherein the container is used in electronic

content and a contained element is contained by the

container, wherein performing the function on the con-

tainer comprises:

determining that the container constrains a contained
element size attribute of the contained element based
at least in part on identifying that a fixed value, a
minimum constraint value, or a maximum constraint
value is not associated with the container size
attribute;

2 <

US 9,196,226 B2

15

based on the determination that the container does not
constrain the contained element size attribute, per-
forming the function on the contained element to
determine the value for the contained element size
attribute by passing to the function, as a parameter,
information identifying that there are no constraints
of the container on the contained element size
attribute; and

determining the value of the size attribute of the con-
tainer based on the determined value for the contained
element size attribute.

2. The method of claim 1, wherein the container constrains
the contained element size attribute if the fixed value is speci-
fied for the container size attribute.

3. The method of claim 1 wherein, wherein the container
constrains the contained element size attribute if the mini-
mum constraint value or maximum constraint value is speci-
fied for the container size attribute.

4. The method of claim 1 wherein a result of the function
performed on the contained element is used in determining
the value of the size attribute of the container in performing
the function on the container.

5. The method of claim 4 wherein the result of the function
performed on the contained element comprises the value
determined for the contained element size attribute, wherein
the value determined for the container size attribute depends
upon the value determined for the contained element size
attribute.

6. The method of claim 1 wherein:

the container size attribute is a width of the container; and

the contained element size attribute is a width of the con-

tained element.

7. The method of claim 1 wherein:

the container size attribute is a height of the container; and

the contained element size attribute is a height of the con-

tained element.

8. The method of claim 1 wherein performing the function
on a container is performed as part of a single pass through a
data structure to lay out each element of the electronic con-
tent.

9. The method of clam 1 wherein performing the function
on a container is performed to validate the layout of one or
more elements of the electronic content, wherein the function
is performed in response to one or more elements being
invalidated during use of the electronic content.

10. The method of claim 1, wherein the function comprises
a first layout pass function and the method further comprises
performing, via the processor of the computer device and in
response to an event adjusting content included in the con-
tainer, a second layout pass function on the container to
determine a second value for the container size attribute.

11. A computer-implemented method comprising:

determining, via a processor of a computer device, that a

container has a width limitation that constrains a width
of'an element contained within the container and that the
container has no height limitation that constrains a
height of the element contained within the container,
wherein the container is used in electronic content;

performing, via the processor of the computer device, a

first function to determine a value for the width of the
element, wherein a parameter of the first function iden-
tifies the width limitation that constrains the contained
element width;

in response to an event adjusting a portion of the electronic

content, performing, via the processor of the computer
device a second function to determine a value for the
height of the element, wherein the value for the height of

16

the element is determined based on the value determined

for the width of the element and information identifying

that the container has no height limitation that constrains

the height of the element contained within the container;
5 and

determining, via the processor of the computer device, a
value for the height of the container based on the value
determined for the height of the element.

12. The method of claim 11 wherein the width limitation

10 specifies a fixed value for the width of the container.

13. The method of claim 11 wherein the width limitation

specifies a maximum value for the width of the container.

14. The method of claim 11 wherein the width limitation

specifies a minimum value for the width of the container.
15 15. A computer-implemented method comprising:
determining, via an invalidate function executed by a pro-
cessor of a computer device, whether to invalidate a
layout of an element, wherein invalidation of the layout
indicates a requirement to lay out the element, wherein
20 determining whether to invalidate the layout of the ele-
ment comprises:
determining whether a container containing the element
has a measured size that depends on a measured size
of the element and, if the container measured size
25 depends on an element measured size, determining
whether to invalidate the layout of the container;
determining whether the element is fully constrained to
the container; and
invalidating the element if the container is invalidated or
30 ifthe element is not fully constrained to the container.

16. A system comprising:

a processor for executing instructions stored in computer-
readable medium on one or more devices providing an
application for specifying modifications to electronic

35 content, the application comprising one or more mod-
ules configured to perform the steps comprising:
determining that a container has a width limitation that

constrains a width of an element contained within the
container and that the container has no height limita-

40 tion that constrains a height of the element contained

within the container, wherein the container is used in
electronic content;

performing a first function to determine a value for the
width of the element, wherein a parameter of the first

45 function identifies the width limitation that constrains

the contained element width;

in response to an event adjusting a portion of the electronic
content, performing a second function to determine a
value for the height of the element, wherein the value for

50 the height of the element is determined based on the
value determined for the width of the element and infor-
mation identifying that the container has no height limi-
tation that constrains the height of the element contained
within the container; and

55 determining a value for the height of the container based on
the value determined for the height of the element.

17. A non-transitory computer-readable medium on which

is encoded program code, the program code comprising:
program code for performing, via a processor of a com-

60 puter device, a function on a container to determine a
value for a container size attribute, wherein the container
is used in electronic content and a contained element is
contained by the container, wherein the program code
for performing the function on the container comprises:

65 program code for determining that the container con-

strains a contained element size attribute of the con-
tained element based at least in part on identifying

US 9,196,226 B2

17

that a fixed value, a minimum constraint value, or a
maximum constraint value is not associated with the
container size attribute;

program code for performing the function on the con-
tained element to determine the value for the con-
tained element size attribute by passing to the func-
tion, as a parameter, information identifying that there
are no constraints of the container on the contained
element size attribute based on the determination that
the container does not constrain the contained ele-
ment size attribute; and

program code for determining the value of the size
attribute of the container based on the determined
value for the contained element size attribute.

#* #* #* #* #*

10

15

18

